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Using direct numerical simulations of forced rotating turbulence, we study the effect of
rotation on the growth rate and the saturation level of the small-scale dynamo. For slow
rotation rates, increasing the rotation rate reduces both the growth rate and the saturation
level. Once the rotation rate crosses a threshold, large-scale vortices are formed which
enhance the growth rate and the saturation level. Below this threshold, the suppression of
the small-scale dynamo with increasing rotation is explained by the fact that at scales close
to, but smaller than, the forcing scale, rotating turbulence is one-dimensionalized, with the
velocity component along the rotation axis being larger than the other two components.
This is due to the rotational destabilization of vortices produced by the forcing function.
While the rotational effect on the growth rate becomes small at high Re, the ratio of the
steady-state magnetic to kinetic energies remains suppressed by up to 35% as compared to
the non-rotating case.

1. Introduction
Magnetic fields are ubiquitous in astrophysics, being found in stars, planets, galaxies, and
even galaxy clusters (for a review, see Brandenburg & Subramanian 2005, section 2). The
predominant explanation for the generation and sustenance of such fields is the turbulent
dynamo, wherein a pre-existing seed magnetic field is amplified by the turbulent motion of a
conducting fluid (Moffatt 1978; Krause & Rädler 1980; Brandenburg & Subramanian 2005;
Shukurov & Subramanian 2022).

Theoretically, dynamo mechanisms are classified into two types based on the correlation
length of the generated magnetic field. In large-scale dynamos, the correlation length of the
magnetic field is much larger than that of the turbulent velocity field. Such dynamos have
been extensively studied, both analytically and numerically (for a review, see Brandenburg
& Subramanian 2005, sections 6–10). In small-scale dynamos (SSD), which are the focus of
this work, the correlation length of the magnetic field is of the order of or smaller than that
of the turbulent velocity field. Note that these two kinds of mechanisms can coexist in the
same physical system.

The earliest analytical studies of the SSD (Kazantsev 1968; Kulsrud & Anderson 1992)
considered a homogeneous, isotropic, incompressible, nonhelical, Gaussian, and Markovian
velocity field. Later analytical and numerical studies attempted to relax these assumptions.
For example, Vainshtein & Kichatinov (1986) and Malyshkin & Boldyrev (2007, 2010) have
studied the effect of helicity; Federrath et al. (2014) the effect of compressibility; Kopyev
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et al. (2022) the effect of non-Gaussianity; Bhat & Subramanian (2014), and Gopalakrishnan
& Singh (2024) the effect of a nonzero correlation time; Skoutnev et al. (2021) the effect of
stratification; and Singh et al. (2017) the effect of shear.

Since many systems of astrophysical interest rotate, it is natural to ask how rotation affects
the SSD. Favier & Bushby (2012) have studied the effect of rotation on SSD action in
compressible (i.e. non-Boussinesq) convection. Comparing a rotating simulation with a non-
rotating one, they claim to find “weak evidence” that the rotating cases saturate at a higher
level. Their statement rests on a comparison of time series short enough that fluctuations in
the magnetic and kinetic energies are expected to affect their conclusion. We are not aware
of any other analytical or numerical studies of the effect of rotation on the SSD.

Rotation is expected to have the following effects: (i) the turbulent velocity field may
become anisotropic at scales larger than the Zeman scale (Zeman 1994; Baqui & Davidson
2015); and (ii) rotation itself may generate large-scale flows (Guervilly et al. 2017; Bushby
et al. 2018; Käpylä 2019b, fig. 3). The effect of anisotropy on the SSD can be inferred from
the work of Skoutnev et al. (2021), who have found that stratification suppresses the growth
rate of the SSD by making the velocity field two-dimensional at large scales. Naively, one
expects that if rotation were to make the velocity field anisotropic, it would also have a similar
effect. On the other hand, as an example of the effect of large-scale flows on the SSD, one can
consider the simulations by Singh et al. (2017), who found that the growth rate of the SSD
is enhanced when large-scale shear is imposed on the system. Given the opposite directions
of these two effects, it is thus not clear, a priori, if rotation enhances or suppresses the SSD.
Further, neither of these studies looked at the saturation level (i.e. the ratio of the magnetic
energy to the kinetic energy in the steady state) of the SSD. Rather, they restricted themselves
to the kinematic phase, where the magnetic field is so weak that it does not affect the velocity
field. The nonlinear phase of the SSD is of more astrophysical interest than the kinematic
phase; the SSD grows on a timescale related to the eddy turnover time, much smaller than
the typical ages of astrophysical objects.

In this work, we use direct numerical simulations to study the effect of rotation on the
growth rate and the saturation level of the SSD. Section 2 describes our numerical setup. In
section 3, we discuss simulations of the SSD in forced rotating turbulence. To understand
our findings, we then analyse a set of purely hydrodynamic simulations in section 4. Finally,
section 5 summarizes our work and discusses future directions.

2. Numerical methods

2.1. Equations, domain, and boundary conditions

We consider isothermal forced turbulence in a cubical periodic box of side 𝐿. Rotation is
treated in the 𝑓 -plane approximation: spatial variation of the Coriolis force is ignored, and
there is no centrifugal force. We choose units in which the sound speed 𝑐, the initial (uniform)
density 𝜌0, and the magnetic permeability 𝜇0 are 1; and 𝐿 = 2𝜋. These choices mean that
if we define 𝑘0 ≡ 2𝜋/𝐿, the unit for time is (𝑐𝑘0)−1; length is 𝑘−1

0 ; mass is 𝜌0𝑘
−3
0 ; and

magnetic field is
√︁
𝜇0𝜌0𝑐2. In the simulations described in section 3, we solve the continuity,
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momentum, and induction equations:
D ln 𝜌

d𝑡
= − ∇· 𝒖 (2.1)

𝜌
D𝒖

d𝑡
= − 𝑐2∇𝜌 − 2𝜌𝛀 × 𝒖 + 𝜌𝑭(visc) + 𝜌𝑭(Lor) + 𝜌𝑭 (2.2)

𝜕𝑨

𝜕𝑡
= 𝒖 × 𝑩 + 𝜂∇2𝑨 (2.3)

where

𝑭(Lor) ≡ 𝑱 × 𝑩

𝜌
(2.4)

𝑩 ≡ ∇×𝑨 (2.5)

𝑱 ≡ ∇×𝑩

𝜇0
(2.6)

𝑭(visc) ≡ 1
𝜌
∇·

[
2𝜌𝜈

↔

𝑆

]
(2.7)

𝑆𝑖 𝑗 ≡
1
2

(
𝜕𝑖𝑢 𝑗 + 𝜕 𝑗𝑢𝑖 −

2
3
𝛿𝑖 𝑗∇· 𝒖

)
(2.8)

with 𝜌 being the density; 𝒖 the velocity; D/d𝑡 ≡ 𝜕/𝜕𝑡 + 𝒖 · ∇ the convective derivative; 𝑐 the
speed of sound; Ω the rotational rate; 𝑭 a forcing function; 𝑭(visc) the viscous force; 𝑭(Lor) the
Lorentz force; 𝑨 the magnetic vector potential; 𝜈 the kinematic viscosity; 𝜇0 the magnetic
permeability; and 𝜂 the magnetic diffusivity. Later on, in section 4, we consider purely
hydrodynamic simulations, where we solve just the continuity and momentum equations (as
given above, but without the Lorentz force). We choose a coordinate system such that 𝛀 is
along the 𝑧 axis (𝛀 = Ω𝒛), and thus refer to the latter as the axial direction.

For all our simulations except those described in section 4.3, the forcing function is given
by (Haugen et al. 2004)

𝑭 = 𝑓0𝑐

√︂
𝑘𝑐

𝛿𝑡

𝒌 × 𝒆√︃
𝑘2 − (𝒌 · 𝒆)2

cos(𝒌 · 𝒙 + 𝜙) (2.9)

where 𝛿𝑡 is the length of the timestep, and 𝑓0 is a dimensionless factor that controls the
amplitude of the forcing. The quantities 𝒌, 𝒆, and 𝜙 are randomly chosen at each timestep,
subject to the following constraints: 𝒌 is chosen such that 2.5 < 𝑘/𝑘0 < 3.5 (resulting in
a mean wavenumber 𝑘 𝑓 ≈ 3.13𝑘0); 𝒆 is a unit vector randomly chosen in the plane normal
to 𝒌; and −𝜋 ⩽ 𝜙 < 𝜋. Further, we choose 𝑓0 = 3 × 10−2. Since this forcing function is
divergence-free, we refer to it as solenoidal forcing.

The equations described above are solved using the Pencil code (Pencil Code Collabo-
ration et al. 2021).† Spatial derivatives are discretized using a sixth-order finite difference
scheme, while the equations are evolved in time using a third-order Runge-Kutta method.
Upwinding is used for advection of the density, the velocity, and the magnetic vector potential
(Dobler et al. 2006, appendix B). We use the same number of grid points in each direction.
In appendix A, we verify that the number of grid points we choose is sufficient to resolve the
phenomena we are interested in.

The initial velocity is set to zero, while the initial density is set to 𝜌0. Each component of
the magnetic vector potential at each grid point is initially drawn from a Gaussian distribution

† https://pencil-code.nordita.org

https://pencil-code.nordita.org
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with mean 0 and standard deviation 4 × 10−6√𝜇0𝜌0 𝑐/𝑘0. The timestep is chosen to keep
the Courant numbers based on the advective and diffusive terms less than 0.6 and 0.25
respectively.

2.2. Diagnostics
To characterize the solutions to the simulations described above, we use the following
dimensionless numbers. The Reynolds number (Re ≡ 𝑢rms𝐿 𝑓 /𝜈, where 𝐿 𝑓 ≡ 2𝜋/𝑘 𝑓 )
characterizes how turbulent the flow is. The Coriolis number (Co ≡ Ω𝐿 𝑓 /𝑢rms, where 𝑢rms
is the root mean square value of the velocity over the entire box) expresses the importance of
rotation relative to advection. Note that this is inversely proportional to the more commonly
used Rossby number. Additionally, we also quote the Mach number (Ma ≡ 𝑢rms/𝑐). The
magnetic Prandtl number, Pr𝑚 ≡ 𝜈/𝜂, is an independent dimensionless number; throughout
this study, we set Pr𝑚 = 1.

2.3. Data analysis
In the context of the SSD, we are interested in comparing quantities across the kinematic and
saturated phases. It is thus useful to have an automated way of computing averages over the
kinematic and saturated phases given a particular simulation.

The first issue is that since we start from a fluid at rest, the velocity field takes some time to
reach a statistically steady state under the influence of the forcing function. We thus exclude
the first five turnover times while computing averages. The turnover time is estimated as
𝜏to ≡ 2𝜋/

(
𝑢rms,full𝑘 𝑓

)
, where 𝑢rms,full is the average over the entire time series.

To compute averages over the kinematic phase, we consider times after the first five turnover
times, but before the volume-averaged magnetic energy reaches 10−2 of the volume-averaged
kinetic energy. This is further divided into five chunks, the average over each of which is
treated as an independent realization. The average of the quantity of interest is then estimated
by averaging the chunked averages, while the associated error is estimated as 𝜎/

√
𝑛, where 𝜎

is the standard deviation of the chunked averages, and 𝑛 is the number of chunks. In particular,
the growth rate is estimated by fitting a straight line to the time series of the logarithm of the
volume averaged magnetic energy in each chunk.

The beginning of the saturated phase is estimated to be the point where the extrapolated
kinematic fit to the volume-averaged magnetic energy exceeds the time average (excluding
the first five turnover times) of the volume-averaged kinetic energy. As in the kinematic
phase, errors in quantities pertaining to the saturated phase are estimated by dividing it into
five chunks.

3. The effect of rotation on the small-scale dynamo
First, we consider a set of simulations where the rotation rate varies, but all other parameters
are kept the same (the set A in table 1). For notational convenience, we use 𝐸 to denote
the ratio of the magnetic energy to the kinetic energy. Figure 1 shows that for Co ≲ 2, both
the growth rate and the saturation level of the magnetic field decrease as the rotational rate
increases. However, at higher rotational rates, the growth rate and the saturation level increase
with rotation. Note from table 1 that Re increases monotonically with the rotation rate; this
does not explain the non-monotonic trend in the growth rate.

Since the SSD is known to be affected by anisotropization of the velocity field, let us now
check if similar trends are seen in the level of anisotropy of the latter. Following Käpylä
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Name Ω/(𝑐𝑘0) 𝜂𝑘0/𝑐 𝑓0 𝑁𝑥 Re Co Ma 𝛾𝜏to 𝐸

A

0 1 × 10−3 3 × 10−2 128 308 0.00 0.154 0.179(15) 0.0812(32)
0.025 1 × 10−3 3 × 10−2 128 309 0.34 0.154 0.184(12) 0.0738(32)
0.05 1 × 10−3 3 × 10−2 128 310 0.68 0.155 0.170(10) 0.0699(23)
0.075 1 × 10−3 3 × 10−2 128 311 1.00 0.155 0.157(15) 0.0561(22)
0.1 1 × 10−3 3 × 10−2 128 314 1.32 0.157 0.153(12) 0.0530(13)
0.125 1 × 10−3 3 × 10−2 128 317 1.63 0.158 0.1317(63) 0.0440(39)
0.15 1 × 10−3 3 × 10−2 128 321 1.91 0.160 0.1027(69) 0.0321(17)
0.175 1 × 10−3 3 × 10−2 128 326 2.19 0.163 0.0960(81) 0.0283(19)
0.2 1 × 10−3 3 × 10−2 128 338 2.43 0.168 0.0997(69) 0.0337(30)
0.3 1 × 10−3 3 × 10−2 128 451 2.94 0.225 0.119(18) 0.0460(30)
0.5 1 × 10−3 3 × 10−2 128 516 4.62 0.258 0.173(21) 0.0768(73)

B

0 5 × 10−4 2.6 × 10−2 256 586 0.00 0.146 0.399(12) 0.1506(26)
0.025 5 × 10−4 2.6 × 10−2 256 586 0.38 0.146 0.407(16) 0.1461(38)
0.05 5 × 10−4 2.6 × 10−2 256 588 0.74 0.147 0.389(17) 0.1312(13)
0.075 5 × 10−4 2.6 × 10−2 256 592 1.11 0.148 0.368(19) 0.1354(35)
0.1 5 × 10−4 2.6 × 10−2 256 598 1.45 0.149 0.3422(79) 0.1182(25)
0.125 5 × 10−4 2.6 × 10−2 256 600 1.78 0.150 0.322(14) 0.1053(35)
0.15 5 × 10−4 2.6 × 10−2 256 609 2.10 0.152 0.3210(96) 0.0906(14)

C

0 2.5 × 10−4 2.6 × 10−2 512 1202 0.00 0.150 0.659(22) 0.2162(87)
0.05 2.5 × 10−4 2.6 × 10−2 512 1198 0.75 0.149 0.618(28) 0.1994(75)
0.1 2.5 × 10−4 2.6 × 10−2 512 1219 1.45 0.152 0.604(23) 0.1719(95)
0.15 2.5 × 10−4 2.6 × 10−2 512 1247 2.10 0.156 0.562(19) 0.1403(37)

Table 1: Parameter values and diagnostics (computed by averaging over the kinematic
phase) for the magnetohydrodynamic simulations. In all these simulations, 𝜈 = 𝜂. For
Ω ⩾ 0.2 𝑐𝑘0 (where a large-scale vortex is formed), 𝑢rms does not reach a statistically

steady state within the kinematic phase; this affects the quoted values of Re, Co, and Ma.
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Figure 1: Left: growth rate (scaled by the turnover time) of the magnetic energy for
different Coriolis numbers in the set of simulations with 𝜂 = 10−3 𝑐/𝑘0 (marked A in

table 1). The shaded region represents the estimated error in the growth rate. Right: the
ratio of magnetic to kinetic energies in the saturated phase for different rotation rates in

the same set of simulations.
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Figure 2: Left: level of anisotropy induced by rotation in the same simulations as in figure
1. The inset on the left shows a zoomed-in view of the low-Ω region. Right: at high

rotation rates, a large fraction of the kinetic energy resides at spatial scales larger than the
forcing scale.
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Figure 3: The fraction of the magnetic energy at spatial scales smaller than the forcing
scale, as a function of the Coriolis number, in the same simulations as in figure 1.

(2019a, eq. 17; 2019b, eq. 30), we quantify the anisotropy of the flow by

𝐴𝑉 ≡
〈
𝑢2
𝑥

〉
+
〈
𝑢2
𝑦

〉
− 2

〈
𝑢2
𝑧

〉〈
𝑢2
〉 (3.1)

where ⟨□⟩ denotes the volume average of □. Note that −2 ⩽ 𝐴𝑉 ⩽ 1, and 𝐴𝑉 = 0 if the
turbulence is isotropic. Recall that we have chosen a coordinate system such that the rotation
vector is along the 𝑧 axis.

The left panel of figure 2 shows that the flow is almost isotropic below Co ≈ 2. For faster
rotation rates, the flow becomes highly anisotropic, with the components of the velocity field
perpendicular to the rotation axis being larger than that along the rotation axis. The right
panel of figure 2 shows that in this regime, the fraction of the kinetic energy† above the

† This was actually calculated from the velocity power spectrum. Since these simulations are at low Mach
number, we do not expect our results to be affected by neglecting density fluctuations.
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Figure 4: Kinematic growth rate (left) and the ratio of magnetic to kinetic energies in the
saturated phase (right) as a function of the Coriolis number for different Reynolds

numbers. Each set of simulations (table 1) has been labelled by the Reynolds number of its
non-rotating case. The subscript ‘rel’ denotes that the quantity plotted has been

normalized by the corresponding value in the absence of rotation.

forcing scale is much larger than in the slowly rotating regime. The phenomenon we observe
here is referred to as the large-scale vortex instability, and is known to be capable of exciting
a large-scale dynamo (Guervilly et al. 2017; Bushby et al. 2018). Indeed, figure 3 shows
that when Co ≳ 2, the fraction of the magnetic energy at scales larger than the forcing scale
increases with the rotation rate, suggesting that what we observe in this regime is better
described as a large-scale dynamo coexisting with the small-scale dynamo.

Going back to the left panel of figure 2, note that for Co ≲ 2, 𝐴𝑉 becomes more negative
as the rotation rate increases (both in the kinematic and saturated phases). This corresponds
to the component of the velocity field along the rotation axis being larger than the other two
components, and may be connected to the decrease in the growth rate and the saturation level
of the SSD with increasing rotation.

Figure 4 shows the growth rate and the saturation level of the magnetic field as a function
of the Coriolis number, but this time for different values of the Reynolds number. We restrict
ourselves to rotation rates where the large-scale vortex instability is not excited. Since both the
growth rate and the saturation level of the magnetic field are known to be functions of Re and
Pr𝑚 (Schekochihin et al. 2004, fig. 14; Federrath et al. 2014), we express these quantities
in the rotating simulations as fractions of their values in otherwise identical non-rotating
simulations.

At the highest Re considered, the growth rate of the SSD does not vary much with rotation,
being suppressed by only around 15% at Co ≈ 2. Further, the strength of this effect seems to
decrease as Re increases, suggesting that rotation does not affect the growth rate of the SSD
in the astrophysically relevant limit of high Re. However, the steady-state ratio of magnetic
to kinetic energies behaves somewhat differently: for a particular rotational rate, at the two
highest values of Re considered, this ratio remains the same fraction of its non-rotating value.
This raises the possibility that the rotational effect on the saturation level of the magnetic
field remains significant at high Re. Quantitatively, at the highest Re considered, the ratio
of magnetic to kinetic energies is suppressed by about 35% at Co ≈ 2 as compared to its
non-rotating value.

The suppression of the SSD which we observe with increasing rotation in the absence of
the large-scale vortex instability disagrees with the claim made by Favier & Bushby (2012).
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Ω/(𝑐𝑘0) viscosity 𝜈𝑘0/𝑐 forcing 𝑓0 𝑁𝑥 Co Re Re𝜏 𝐿 𝑓 /𝐿Tay Ma

0.05 normal 5 × 10−3 solenoidal 3 × 10−2 64 0.90 45 15 3.0 0.111
0.15 normal 5 × 10−3 solenoidal 3 × 10−2 64 2.66 45 15 3.0 0.113
0.25 normal 5 × 10−3 solenoidal 3 × 10−2 64 4.44 45 15 3.0 0.113
0.5 normal 5 × 10−3 solenoidal 3 × 10−2 64 8.73 46 16 2.9 0.115

0.05 normal 5 × 10−4 solenoidal 3 × 10−2 256 0.62 647 98 6.6 0.161
0.15 normal 5 × 10−4 solenoidal 3 × 10−2 256 1.81 666 106 6.3 0.166
0.2 normal 5 × 10−4 solenoidal 3 × 10−2 256 2.34 688 112 6.1 0.172
0.25 normal 5 × 10−4 solenoidal 3 × 10−2 256 2.80 718 123 5.9 0.179

0.25 normal 2 × 10−4 solenoidal 3 × 10−2 256 2.70 1862 213 8.7 0.186
0.25 Smagorinsky solenoidal 3 × 10−2 256 2.70 12.5 0.185
0.25 Smagorinsky solenoidal 3 × 10−2 512 2.68 19.4 0.187

0.25 normal 5 × 10−4 irrotational 8.5 × 10−1 256 2.71 811 56 14.5 0.194

Table 2: Parameter values and diagnostics for the hydrodynamic simulations.

However, we note that their suggestion that rotation enhances the saturation level of the SSD
relies on a time series short enough to be significantly affected by stochastic fluctuations.

4. Generation of anisotropy in rotating forced turbulence
4.1. Scale-dependence of rotationally generated anisotropy

To understand why rotation affects the small-scale dynamo, we now study the anisotropy
of the velocity field at different spatial scales in a set of purely hydrodynamic simulations
(relevant parameters and diagnostics are given in table 2). Following Käpylä (2019a, eq. 27),
we quantify scale-dependent anisotropy by the spectral analogue of 𝐴𝑉 :

𝐴𝑉 (𝑘) ≡
𝐸𝑥 (𝑘) + 𝐸𝑦 (𝑘) − 2𝐸𝑧 (𝑘)

𝐸 (𝑘) (4.1)

where, for example, 𝐸𝑥 (𝑘) is the scalar 3D power spectrum of 𝑢𝑥 . Appendix B discusses why
we do not use the more conventional characterization based on parallel and perpendicular
length scales.

Figure 5a shows 𝐴𝑉 (𝑘) for different values of Ω in simulations with the same value
of 𝜈. Consistent with what we saw earlier, we find that at wavenumbers smaller than the
forcing wavenumber, 𝐴𝑉 (𝑘) attains large, positive values as Ω increases. However, we also
find that at wavenumbers larger than the forcing wavenumber, 𝐴𝑉 (𝑘) attains negative values.
Figure 5b shows a series of simulations with a larger value of 𝜈, where no large-scale vortex is
formed. We still find that 𝐴𝑉 is negative at wavenumbers larger than the forcing wavenumber,
suggesting that the effect at play is independent of the large-scale vortex instability.

In simulations of the decay of initially isotropic, rotating, incompressible turbulence,
Bartello et al. (1994, fig. 8b) observed a similar strengthening of the axial component of the
velocity field at small scales. They explained this by the fact that vortices with vorticities
(in a rotating frame) antiparallel to the rotational axis become unstable, according to the
Rayleigh criterion (Chandrasekhar 1961, section 66), when the rotational rate is of the same
order as their vorticity. The resulting instability leads to three-dimensionalization of such
flow structures. Since this mechanism tends to drain energy from flows perpendicular to the
rotation axis, the net result is that the axial component of the velocity field becomes larger
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(a) 𝜈 = 5 × 10−4 𝑐/𝑘0
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Figure 5: Variation of 𝐴𝑉 (𝑘) and the specific kinetic energy spectrum with the rotation
rate for two different values of 𝜈. The black vertical dotted line marks the forcing

wavenumber, while the grey vertical dotted line marks that corresponding to the Taylor
microscale (equation 4.4) in the case with the slowest rotation. In each case, the portion of
the spectrum at wavenumbers smaller than the Zeman wavenumber (defined in equation

4.2) is marked by a dashed line, while a solid line is used for larger wavenumbers.

than the other two components. Relative strengthening of the axial component of the velocity
field is also predicted by the EDQNM calculations of Cambon & Jacquin (1989, fig. 7).†

In rotating turbulence, the Zeman wavenumber (Zeman 1994, eq. 6),

𝑘ZE ≡ Ω3/2

𝜖1/2 (4.2)

is usually thought to separate rotationally influenced small wavenumbers from isotropic large
wavenumbers (e.g. Baqui & Davidson 2015, pp. 2,14); the idea is that when 𝑘 > 𝑘ZE, the
turnover time of the velocity field is smaller than the rotational period, leading to rotational

† Bartello et al. (1994, p. 14) mention that Teissedre & Dang (1987) observed this effect in direct
numerical simulations; lacking access to the study by Teissedre & Dang, we have not been able to verify
this.
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Figure 6: Effect of the position of the dissipative scale on 𝐴𝑉 (𝑘) in a set of simulations
with the same rotation rate (Ω = 0.25 𝑐𝑘0). Solid lines denote simulations with normal

viscosity (constant 𝜈), while dashed lines denote simulations with Smagorinsky viscosity.
The black vertical dotted line marks the forcing wavenumber.

effects being unimportant. In figures 5a and 5b, for each value of Ω, the Zeman wavenumber
has been indicated by using a dashed line for 𝑘 < 𝑘ZE, and a solid line for 𝑘 > 𝑘ZE. In figure
5b, we clearly see that the position of the Zeman wavenumber does not affect the formation
of the negative-𝐴𝑉 subrange at 𝑘 > 𝑘 𝑓 .

4.2. Return to isotropy at small scales for large Re
As long as Re is large enough, one expects turbulence to become isotropic at wavenumbers
much larger than the Zeman and integral wavenumbers. However, simulations that resolve
the large range of wavenumbers required to see such an effect are computationally expensive.
To get a hint of what happens at higher Re than those discussed above, we additionally
consider large-eddy simulations in which the viscous force is still given by equation 2.7, but
the kinematic viscosity, 𝜈, is replaced by the Smagorinsky viscosity (Lesieur 2008, section
12.2.8):

𝜈Smag ≡
(
𝐶SmagΔ

)2 √︁2𝑆𝑖 𝑗𝑆𝑖 𝑗 (4.3)
where Δ is the grid spacing, and 𝐶Smag = 0.2 (the recommended value of 𝐶Smag is between
0.1 and 0.2). The parameters for these simulations are given in table 2 along with some
diagnostics.

We define the Taylor microscale, which describes the typical length scale associated with
velocity gradients in the flow (Taylor 1935; Lesieur 2008, eq. 6.64), as

𝐿Tay ≡

√√ 〈
𝑢2
〉〈

𝑢2
𝑥,𝑥

〉
+
〈
𝑢2
𝑦,𝑦

〉
+
〈
𝑢2
𝑧,𝑧

〉 (4.4)

where, e.g., 𝑢𝑥,𝑥 ≡ 𝜕𝑢𝑥/𝜕𝑥. In homogeneous and isotropic turbulence, it is thought of as
the length scale below which viscous effects start becoming important. Figure 6 shows that
as the Taylor microscale gets further and further from the integral scale, the flow indeed
becomes more isotropic at large wavenumbers. The subrange of constant 𝐴𝑉 (𝑘) in figure 5
is then explained by the inertial range being too small to allow a complete return to isotropy.
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4.3. The effect of the forcing function
At this stage, we hypothesize that 𝐴𝑉 (𝑘) becoming negative at scales just below the forcing
scale is associated with the decay of vortices injected by the forcing function. To verify
this hypothesis, we consider a simulation with an irrotational forcing function. Instead of
equation 2.9, we use (Mee & Brandenburg 2006)

𝑭 = ∇𝜙 , 𝜙 ≡ 𝑓0𝑐

√︂
𝑐𝑅

𝛿𝑡
exp

(
− (𝒙 − 𝒂)2

𝑅2

)
(4.5)

where 𝒂 is randomly chosen at each timestep, and 𝑓0 is dimensionless. Mee & Brandenburg
(2006, eq. 8) have shown that the resulting velocity spectrum peaks near the wavenumber
𝑘 𝑓 ≡ 2/𝑅; for easy comparison with the solenoidally forced simulations (for which 𝑘 𝑓 ≈
3.13), we choose 𝑅 = 2/3. The last row of table 2 gives the parameters for this simulation
along with some diagnostics.

Figure 7 shows that with the irrotational forcing function described above, 𝐴𝑉 (𝑘) is close
to zero at wavenumbers larger than that of the forcing scale. Recalling our earlier discussion of
the work of Bartello et al. (1994), we conclude that the one-dimensionalization of turbulence
below the forcing scale is due to rotational effects on vortices injected by the forcing function.
Note that large-scale vortices are formed at low wavenumbers even in the irrotationally forced
case; this is likely due to vorticity generated in the dissipative range undergoing an inverse
cascade.

5. Discussion and conclusions
Rotational effects on vortices in a solenoidally forced turbulent flow can cause one-
dimensionalization of the velocity field at scales smaller than the integral scale, with
the component along the rotational axis becoming significantly larger than the other two
components. We have found that this reduces both the growth rate and the saturation level of
the SSD in solenoidally forced rotating turbulence. While the rotational effect on the growth
rate becomes small at the highest Re considered, the saturation level is less sensitive to Re
(still being suppressed by up to 35%).

A possible explanation for why the growth rate and the saturation level behave differently
is the fact that the correlation length of the magnetic field generated by the SSD is larger in
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the saturated phase than in the kinematic phase (e.g. Seta et al. 2020, table 1). This would
mean that at high Re, SSD action takes place closer to the rotationally affected scales in the
nonlinear phase than in the kinematic phase. Alternatively, vorticity generated by the Lorentz
force (Brandenburg & Scannapieco 2025) may play a role.

Since the effect we describe is absent in irrotationally forced simulations, one would
naively argue that our findings are not relevant to, e.g., turbulence forced by supernovae
in the interstellar medium. However, recall that the isothermal equation of state we have
used precludes the existence of baroclinic torques. In supersonic turbulence with a more
realistic equation of state, vorticity is indeed generated by baroclinic torques (Del Sordo &
Brandenburg 2011). Whether rotation still affects the small-scale dynamo in such systems
depends on the scales at which baroclinic torques generate vortices. We are not aware of any
studies that answer this question, which should be dealt with in future work.

More generally, our finding — that when the anisotropy of the velocity field is scale-
dependent, the kinematic and nonlinear phases of the SSD are affected differently — suggests
that the nonlinear phase of the SSD in stratified or shear-driven turbulence should also be
studied and compared with the known behaviour in the respective kinematic regimes.
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Bartello, Peter, Métais, Olivier & Lesieur, Marcel 1994 Coherent structures in rotating three-
dimensional turbulence. Journal of Fluid Mechanics 273, 1–29.

Bhat, Pallavi & Subramanian, Kandaswamy 2014 Fluctuation dynamo at finite correlation times and
the kazantsev spectrum. The Astrophysical Journal Letters 791 (2), L34.

Brandenburg, Axel & Scannapieco, Evan 2025 Magnetically-assisted vorticity production in decaying
acoustic turbulence. arXiv e-prints , arXiv: 2501.18525.

Brandenburg, Axel & Subramanian, Kandaswamy 2005 Astrophysical magnetic fields and nonlinear
dynamo theory. Physics Reports 417 (1-4), 1–209.
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Appendix A. Grid-dependence tests
Figures 8, 9, and 10 show the resolution-dependence of 𝐴𝑉 (𝑘) and 𝐸 (𝑘) for the three
different values of 𝜈 used in our solenoidally forced hydrodynamic simulations (with the
rotational rate in each case being the most extreme value considered). While 𝐴𝑉 (𝑘) and
𝐸 (𝑘) at the lowest wavenumbers still show some dependence on the grid resolution, they are
both reliable at 𝑘 > 𝑘 𝑓 . For the sake of completeness, we have also indicated the wavenumber
corresponding to the Kolmogorov length scale, the latter being defined as 𝐿Kol ≡

(
𝜌𝜈3/𝜖

)1/4

with 𝜖 ≡
〈
2𝜈𝜌𝑆𝑖 𝑗𝑆𝑖 𝑗

〉
(e.g. Davidson 2004, eq. 1.3).

Appendix B. On alternative methods of quantifying anisotropy
The conventional method of characterizing the scale-dependence of the anisotropy of
turbulence is to compute the velocity power spectrum by restricting the wavevectors which
are summed over. Assuming the direction of anisotropy is 𝒛 and denoting Φ𝑖𝑖 (𝒌) ≡
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Figure 9: Similar to figure 8, but for 𝜈 = 5 × 10−4 𝑐/𝑘0 and Ω = 0.25 𝑐𝑘0.

〈
𝑢𝑖 (𝒌) 𝑢∗𝑖 (𝒌)

〉
, one defines (see Baqui & Davidson 2015, eqs. 1,2)

𝐸 (𝑘) ≡ 1
2

∫
d𝒌 𝛿( |𝒌 | − 𝑘)Φ𝑖𝑖 (𝒌) (B 1)

𝐸 ∥ (𝑘) ≡
1
2

∫
d𝒌 𝛿( |𝒌 · 𝒛 | − 𝑘)Φ𝑖𝑖 (𝒌) (B 2)

𝐸⊥(𝑘) ≡
1
2

∫
d𝒌 𝛿( |𝒌 × 𝒛 | − 𝑘)Φ𝑖𝑖 (𝒌) (B 3)

Note that these are normalized such that (Baqui & Davidson 2015, eq. 3)∫ ∞

0
d𝑘 𝐸 (𝑘) =

∫ ∞

0
d𝑘 𝐸 ∥ (𝑘) =

∫ ∞

0
d𝑘 𝐸⊥(𝑘) =

1
2
〈
𝑢2〉 (B 4)
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Figure 10: Similar to figure 8, but for 𝜈 = 2 × 10−4 𝑐/𝑘0 and Ω = 0.25 𝑐𝑘0.

The quantities 𝐸⊥(𝑘) and 𝐸 ∥ (𝑘)† seem to be preferred in theoretical work (e.g. Goldreich &
Sridhar 1995; Nazarenko & Schekochihin 2011). This appendix explains why, in this study,
we quantify anisotropy using 𝐴𝑉 (𝑘) (defined in equation 4.1) instead.

If the turbulence is homogeneous, isotropic, and nonhelical, we can write (see Lesieur
2008, eq. 5.84)

Φ𝑖𝑖 (𝒌) =
𝐸 ( |𝒌 |)
2𝜋 |𝒌 |2

(B 5)

Plugging this into equation B 2, we find

𝐸 ∥ (𝑎) =
1

4𝜋

∫
d𝒌 𝛿( |𝒌 · 𝒛 | − 𝑎) 𝐸 ( |𝒌 |)

|𝒌 |2
(B 6)

=
1

2𝜋

∫
d𝒌⊥

𝐸

(√︃
𝑎2 + |𝒌⊥ |2

)
𝑎2 + |𝒌⊥ |2

(B 7)

=

∫ ∞

0
𝑘⊥d𝑘⊥

𝐸

(√︃
𝑎2 + 𝑘2

⊥

)
𝑎2 + 𝑘2

⊥

(B 8)

=

∫ ∞

0
d𝑘⊥

𝑘⊥

𝑎2 + 𝑘2
⊥
𝐸

(√︃
𝑎2 + 𝑘2

⊥

)
(B 9)

=

∫ ∞

𝑎

d𝑘
𝐸 (𝑘)
𝑘

(B 10)

which agrees with the relation derived by Davidson (2004, eq. 8.37c). Similarly, from equation

† These are conventionally denoted as 𝐸 (𝑘⊥) and 𝐸 (𝑘 ∥ ) respectively.
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B 3, we find

𝐸⊥(𝑎) =
1

4𝜋

∫
d𝒌 𝛿( |𝒌 × 𝒛 | − 𝑎) 𝐸 ( |𝒌 |)

|𝒌 |2
(B 11)

=
1

4𝜋

∫ ∞

−∞
d𝑘 ∥

∫
d𝒌⊥ 𝛿( |𝒌⊥ | − 𝑎)

𝐸

(√︃
𝑘2
∥ + |𝒌⊥ |2

)
𝑘2
∥ + |𝒌⊥ |2

(B 12)

=

∫ ∞

0
d𝑘 ∥

∫ ∞

0
d𝑘⊥ 𝑘⊥ 𝛿(𝑘⊥ − 𝑎)

𝐸

(√︃
𝑘2
∥ + 𝑘2

⊥

)
𝑘2
∥ + 𝑘2

⊥

(B 13)

=

∫ ∞

0
d𝑘 ∥

𝑎

𝑘2
∥ + 𝑎2

𝐸

(√︃
𝑘2
∥ + 𝑎2

)
(B 14)

=

∫ ∞

𝑎

d𝑘
𝑎 𝐸 (𝑘)

𝑘
√
𝑘2 − 𝑎2

(B 15)

We see that even when the turbulence is homogeneous, isotropic, and nonhelical, one cannot
expect 𝐸 ∥ (𝑘) = 𝐸⊥(𝑘); it is thus difficult to use these to quantify departures from isotropy.

Consistent with what we saw above, Davidson (2004, sections 8.1.5,8.1.9) notes that in
general, 1D (e.g. 𝐸 ∥ (𝑘)) or 2D (e.g. 𝐸⊥(𝑘)) spectra cannot be interpreted in the same way
as 3D spectra (e.g. 𝐸 (𝑘)). The point is that, for example, fixing the value of 𝑘 ∥ (which is
just the projection of 𝒌 onto 𝒛) does not fix the value of |𝒌 |, and thus 𝐸 ∥ (𝑘 ∥ ) depends on all
modes for which |𝒌 | ⩾ 𝑘 ∥ . Davidson refers to this as aliasing.
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